
COMP 550
Algorithm and Analysis

Correctness and 
Running Time

Based on CLRS Sec 2.1, 2.2

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne 



Algorithm: More Formal

• A finite sequence of rigorous instructions for solving a well-

specified computational problem
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Algorithm: Formal

• Alonzo Church and Alan Turing in 1936 came with formal 

definitions for the concept of algorithm

• One definition: Turing Machine that always halts.

• Other definitions: Lambda Calculus, Recursive Functions

• These definitions are equivalent among each others
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Algorithm Analysis
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• If we can develop an algorithm for a problem, we need to 

analyze it (note that some problem may be unsolvable!)

• Is the algorithm correct?

• Use mathematical tools

• How efficient it is?

• Why needed? How to measure this?
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Algorithm Correctness Proof



FindMax: Correctness
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• FindMax is correct iff 

• For each possible input, FindMax halts and 

returns the maximum of input array



FindMax: Correctness
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• Intuitive explanation ≠ Correctness proof

• An example where the algorithm works ≠ Correctness proof

• Common proof techniques

• Proof by Construction

• Proof by Induction

• Proof by Contradiction



FindMax: Correctness
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• Loop invariant

• A property that is true before, during, and after a loop.

• Proving a loop invariant: 3 steps

• Initialization: the loop invariant is true before the loop starts.

• Maintenance: if the invariant is true before one loop iteration, it 

remains true before the next.

• Termination: The loop terminates AND the invariant gives a useful 

property that helps show why the algorithm is correct.



Loop invariant

(LI) At the start of each iteration of 

the for loop of lines 2-4, CurrentMax 

contains the maximum of all elements 

in the subarray A[1 : i-1].
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FindMax: Correctness
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Loop invariant

(LI) At the start of each iteration of 

the for loop of lines 2-4, CurrentMax 

contains the maximum of all elements 

in the subarray A[1 : i-1].
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FindMax: Correctness
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Initialization

LI holds before the first iteration (when i=2)

LI with i=2: CurrentMax contains the 

maximum of the subarray A[1 : 1].

Proof: Due to line 1.
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FindMax: Correctness
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Loop invariant

(LI) At the start of each iteration of 

the for loop of lines 2-4, CurrentMax 

contains the maximum of all elements 

in the subarray A[1 : i-1].

Maintenance

LI holds before the (k+1)-th iteration assuming 

that it holds before the k-th iteration.

If CurrentMax contains the maximum of the 

subarray A[1 : k-1] before the k-th iteration, 

then CurrentMax contains the maximum of the 

sub-array A[1 : k] before the (k+1)-th iteration.
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FindMax: Correctness
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Maintenance: If CurrentMax contains 

the maximum of the subarray A[1 : k-

1] before the k-th iteration, then 

CurrentMax contains the maximum of 

the sub-array A[1 : k] before the 

(k+1)-th iteration.

Proof: We need to consider the k-th iteration.

• CurrentMax holds max
1≤𝑖≤𝑘−1

𝐴[𝑖] before the k-th 

iteration (induction hypothesis).

• Case 1: ∀𝑖 ≤ 𝑘 − 1, 𝐴 𝑖 < 𝐴[𝑘] holds.

• Then, max
1≤𝑖≤𝑘−1

𝐴 𝑖 < 𝐴[𝑘]

• By induction hypothesis, CurrentMax < 𝐴[𝑘]

• Line 4 assigns 𝐴[𝑘] to CurrentMax

• CurrentMax = max
1≤𝑖≤𝑘

𝐴 𝑖
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FindMax: Correctness
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Maintenance: If CurrentMax contains 

the maximum of the subarray A[1 : k-

1] before the k-th iteration, then 

CurrentMax contains the maximum of 

the sub-array A[1 : k] before the 

(k+1)-th iteration.

Proof: We need to consider the k-th iteration.

• CurrentMax holds max
1≤𝑖≤𝑘−1

𝐴[𝑖] before the k-th 

iteration (induction hypothesis).

• Case 2: ∃𝑖 ≤ 𝑘 − 1, 𝐴 𝑖 ≥ 𝐴[𝑘] holds.

• Then, max
1≤𝑖≤𝑘−1

𝐴 𝑖 ≥ 𝐴[𝑘]

• By induction hypothesis, CurrentMax ≥ 𝐴[𝑘]

• Line 3 condition is False

• CurrentMax = max
1≤𝑖≤𝑘

𝐴 𝑖

• i incremented by 1
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COMP550@UNC

Loop invariant

(LI) At the start of each iteration of 

the for loop of lines 2-4, CurrentMax 

contains the maximum of all elements 

in the subarray A[1 : i-1].

Termination

Loop terminates when i > n.

i is an integer → loop terminates when i=n+1

At the start of (n+1)-th iteration of the for loop 

of lines 2-4, CurrentMax contains the maximum of 

all elements in the subarray A[1 : n]. 
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Loop invariant

(LI) At the start of each iteration of 

the for loop of lines 2-4, CurrentMax 

contains the maximum of all elements 

in the subarray A[1 : i-1].

We also need to prove that the algorithm 

always halts.

• Trivial here

•  i cannot increase beyond 𝑛 + 1

• Not always easy!



Algorithm Efficiency
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• There are often many approaches (algorithms) to solve a 

problem (Recall: Finding the maximum)

• How do we choose between them?

• At the heart of computer program design are two 

(sometimes conflicting) goals

1. To design an algorithm that is easy to understand, code, debug

2. To design an algorithm that makes efficient use of the 

computer’s resources
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Algorithm Efficiency



Algorithm Efficiency
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• (1) is the concern of Software Engineering

• (2) is the concern of Algorithm Analysis

• Following questions are relevant for (2):

• How to find the most efficient of several possible algorithms for 

the same problem. 

• Is the algorithm optimal (best in some sense)?

• Can we do even better?



Algorithm Efficiency
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• Since (2) is about efficiency, what should be the metric to 

determine efficiency?

• Computation time (a.k.a. running time)

• Memory requirement

• Communication bandwidth, etc.

• Primary concern:

 i) computation time, ii) memory requirement



Determining Running Time
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• Option 1: Empirical analysis (run executable code)

• Option 2: Theoretical analysis 

• Which one is better?



Option 1: Empirical Analysis
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• Run executable code

• Compare Alg. A and Alg. B that solve the same problem

• Need to implement both

• Suppose Alg. A shows takes less computation time (avg or worst?)

• Alg. A might be better coded

• Can run both on finite number of test cases (inputs). What if Alg. A is 

suitable for these inputs, but does poorly in many unseen inputs? 

• The computing platform may favor Alg. A



Option 2: Theoretical Analysis
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• What computing model needs to be assumed?

• What should be the costs of different operations?

• Running time should be determined with respect to what?

• An algorithm can be represented differently, how to make 

the analysis independent of this dissimilarity?



Computing Model
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• Running time measurement should be machine independent

• Use a hypothetical computing platform (should not be overly 

unrealistic) 

• Our assumption: Random Access Machine (RAM) model

• Single processor

• Executes instructions one after another (no concurrency)



RAM Model
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• Supports primitive constant-time instructions

• Arithmetic (+, –, *, /, %, floor, ceiling).

• Data Movement (load, store, copy).

• Control (branch, subroutine call).

• No complex operations supported

• No sort operation (can’t assume to do it in constant time)

• Simplifying assumption: run time is 1 time unit for all simple 

instructions.



RAM Model
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• Memory is unlimited

• No memory hierarchy Fig. Source: Computer Systems: A Programmer's Perspective, Bryant 
and O’ Hallaron

1 ns

4 ns

100 ns

16k+ ns

Latency Numbers Every Programmer Should Know
https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html


Running Time
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•  The running time of an algorithm on a particular input is 

the number of primitive operations or “steps” executed

• Also called “time complexity” of the algorithm

• Running time usually grows with “input size’’

• Steps required to sort 1 million numbers vs 1000 numbers

• Running time also depends on other input characteristics

• Sorting an already sorted array



Input Size
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• Determine running time w.r.t. input size

• Formally, input size depends on how input is encoded

• We’ll see this later in this course

• Input size depends on the problem in hand

• Array problems: number of items

• Graph problems: number of vertices and edges



Worst, Average, and Best-Case Complexity
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• Worst-case complexity

• Maximum steps the algorithm takes for any possible input

• Most tractable measure

• Average-case complexity

• Average number of steps for all possible inputs

• Requires probability distribution of possible inputs, which is usually difficult to 

provide and to analyze

• Best-case complexity

• Minimum number of steps for any possible input

• Not useful. Why?



Why Worst-Case Complexity?
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• An upper bound on the running time for any input

• The algorithm never takes any longer

• For some algorithms, the worst case occurs fairly often

• The average case is often roughly as bad as the worst case



Worst-Case Complexity: Example
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FindMax(A,n) Cost Times

1. CurrentMax ← A[1]

2. for i ← 2 to n do

3. if A[i] > CurrentMax then

4. CurrentMax ← A[i]

5. return CurrentMax 



Worst-Case Complexity: Example
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FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2

3. if A[i] > CurrentMax then 𝑐3

4. CurrentMax ← A[i] 𝑐4

5. return CurrentMax 𝑐5



Worst-Case Complexity: Example
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FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3

4. CurrentMax ← A[i] 𝑐4

5. return CurrentMax 𝑐5



Worst-Case Complexity: Example
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FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4

5. return CurrentMax 𝑐5

In the worst-case, how many times line 4 executes?



Worst-Case Complexity: Example
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FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4 𝑛 − 1

5. return CurrentMax 𝑐5 1

Worst-case running time, 𝑇(𝑛)  = 𝑐1 + 𝑐2 ⋅ 𝑛 + 𝑐3 ⋅ 𝑛 − 1 + 𝑐4 ⋅ 𝑛 − 1 + 𝑐5

        = 𝑐2 + 𝑐3 + 𝑐4 ⋅ 𝑛 + 𝑐1 − 𝑐3 − 𝑐4 + 𝑐5 
              = 𝑎 ⋅ 𝑛 + 𝑏



Best-Case Complexity: Example
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FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4 ?

5. return CurrentMax 𝑐5 1

In the best-case, how many times line 4 executes?



Best-Case Complexity: Example
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FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4 0

5. return CurrentMax 𝑐5 1

Best-case running time, 𝑇(𝑛)  = 𝑐1 + 𝑐2 ⋅ 𝑛 + 𝑐3 ⋅ 𝑛 − 1 + 𝑐4 ⋅ 0 + 𝑐5

        = 𝑐2 + 𝑐3 + 𝑐4 ⋅ 𝑛 + 𝑐1 − 𝑐3 + 𝑐5 
           = 𝑎 ⋅ 𝑛 + 𝑏



Average-Case Complexity: Example
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FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4 𝑥

5. return CurrentMax 𝑐5 1

Avg-case running time, 𝑇(𝑛) = 𝑐1 + 𝑐2 ⋅ 𝑛 + 𝑐3 ⋅ 𝑛 − 1 + 𝑐4 ⋅ 𝐸[𝑥] + 𝑐5

        = 𝑐2 + 𝑐3 ⋅ 𝑛 + 𝑐1 − 𝑐3 + 𝑐4 ⋅
σ𝑖=0

𝑛−1 𝑖

𝑛
+ c5
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Insertion Sort: Time Complexity
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Goal: evaluate σ𝑖=0
𝑛−1 𝑖

෍

𝑖=0

𝑛−1

𝑖 = ෍

𝑖=1

𝑛−1

𝑖 =
𝑛 − 1 𝑛 

2

The summation

෍

𝑘=1

𝑛

𝑘 = 1 + 2 + ⋯ + 𝑛

is an arithmetic series and has the value

෍

𝑘=1

𝑛

𝑘 =
𝑛(𝑛 + 1)

2

Evaluating the sums
• Appendix A: Summations



Average-Case Complexity: Example
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FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4 𝑥

5. return CurrentMax 𝑐5 1

Avg-case running time, 𝑇(𝑛) = 𝑐1 + 𝑐2 ⋅ 𝑛 + 𝑐3 ⋅ 𝑛 − 1 + 𝑐4 ⋅ 𝐸[𝑥] + 𝑐5

        = 𝑐2 + 𝑐3 ⋅ 𝑛 + 𝑐1 − 𝑐3 + 𝑐4 ⋅
σ𝑖=0

𝑛−1 𝑖

𝑛
+ 𝑐5

         = 𝑐2 + 𝑐3 ⋅ 𝑛 + 𝑐1 − 𝑐3 + 𝑐4 ⋅
𝑛−1 ⋅𝑛

𝑛⋅2
+ 𝑐5

          = 𝑎 ⋅ 𝑛 + 𝑏



Searching Problem
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• Find an element in a sequence of numbers

• Input: A sequence of 𝑛 numbers 𝑎1, 𝑎2, … , 𝑎𝑛  and a 𝑘𝑒𝑦

• Output: True if ∃𝑘 ∈ 1. . 𝑛 ∶ 𝑘𝑒𝑦 = 𝑎𝑘 , False otherwise

• Example:

 Input: 31, 41, 59, 26, 41, 58 , 59

 Output: True



Linear Search
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LinearSearch(A,n,key) Cost Times

1. i = 1

2. while i ≤ n and A[i] ≠ key do

3. i = i + 1

4. if i ≤ n then

5. return True

6. return False

Try at home: Correctness proof by loop invariant.



Linear Search: Worst-Case
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LinearSearch(A,n,key) Cost Times

1. i = 1 𝑐1 1

2. while i ≤ n and A[i] ≠ key do 𝑐2 𝑥

3. i = i + 1 𝑐3 𝑥 − 1

4. if i ≤ n then 𝑐4 1

5. return True 𝑐5 1

6. return False 𝑐6 1

𝑥 is an integer between 1 and 𝑛 + 1

• Worst case: 𝑥 = 𝑛 + 1

• Best case: 𝑥 = 1

• Average case: 𝑥 = 𝑛/2 



Insertion Sort
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• Informal description:

• Iterate the array from the first element

• If the current element is in wrong place w.r.t. already seen 

elements, move it to its correct place



Insertion Sort
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From CLRS 4th edition



Insertion Sort
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5 2 4 6 1 3

key

2 5 4 6 1 3

key

2 4 5 6 1 3

key

2 4 5 6 1 3

key

1 2 4 5 6 3

key

1 2 3 4 5 6



Loop invariant

(LI) At the start of each iteration of the 

for loop of lines 1-8, the subarray A[1 : i-1] 

consists of all elements originally in A[1 : i-

1] and A[1 : i-1] is sorted.
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Insertion Sort: Correctness
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Loop invariant

(LI) At the start of each iteration of 

the for loop of lines 1-8, the subarray 

A[1 : i-1] consists of all elements 

originally in A[1 : i-1] and A[1 : i-1] is 

sorted.

47

Insertion Sort: Correctness
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Initialization

LI holds before the first iteration (when i=2)

LI with i=2: The subarray A[1 : 1] consists of 

all elements originally in A[1 : 1] and A[1 : 1] is 

sorted.

Proof: Trivially true.
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Insertion Sort: Correctness
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Loop invariant

(LI) At the start of each iteration of 

the for loop of lines 1-8, the subarray 

A[1 : i-1] consists of all elements 

originally in A[1 : i-1] and A[1 : i-1] is 

sorted.

Maintenance

LI holds before the (k+1)-th iteration 

assuming it holds before the k-th iteration.

If the subarray A[1 : k-1] is sorted before 

the k-th iteration, then A[1 : k] is sorted 

before the (k+1)-th iteration. 
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Insertion Sort: Correctness
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Maintenance: If the subarray 

A[1 : k] is sorted before the k-th 

iteration, then A[1 : k+1] is 

sorted before the (k+1)-th 

iteration.

Proof: We need to consider the k-th iteration.

• A[1:k-1] is already sorted before that.

• Let k* < k be the last index such that A[j] ≤ 

A[k] for all j ≤ k*. (Loop breaks at j=k*).

• k* = 0 if A[j] > A[k] for all j < k+1.

• Lines 5-7 shifts each A[j] with k* < j < k to 

one position right.

• Line 8 moves key to A[k*+1].

• i increments by 1

Informal!
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Insertion Sort: Correctness
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Loop invariant

(LI) At the start of each iteration of 

the for loop of lines 1-8, the subarray 

A[1 : i-1] consists of all elements 

originally in A[1 : i-1] and A[1 : i-1] is 

sorted.

Termination

Loop terminates when i > n.

i is an integer → loop terminates when i=n+1

At the start of (n+1)-th iteration of the for loop 

of lines 1-8, the subarray A[1 : n] consists of all 

elements originally in A[1 : n] and A[1 : n] is 

sorted. 
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Insertion Sort: Time Complexity
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𝒕𝒊:
How many while 
loop tests for 
current value of i

Running time, T 𝑛 = 𝑐1 ⋅ 𝑛 + 𝑐2 𝑛 − 1 + 𝑐4 𝑛 − 1 + 𝑐5 ⋅ σ𝑖=2
𝑛 𝑡𝑖 +

    𝑐6 ⋅ σ𝑖=2
𝑛 (𝑡𝑖−1) + 𝑐7 ⋅ σ𝑖=2

𝑛 (𝑡𝑖−1) + 𝑐8(𝑛 − 1)

       = (𝑐1 + 𝑐2 + 𝑐4 + 𝑐8) 𝑛 +  𝑐5 ⋅ σ𝑖=2
𝑛 𝑡𝑖 + (𝑐6 + 𝑐7) σ𝑖=2

𝑛 (𝑡𝑖−1)
−(𝑐2 + 𝑐4 + 𝑐8)

                             = 𝑎 ⋅ 𝑛 + 𝑐5 ⋅ σ𝑖=2
𝑛 𝑡𝑖 + (𝑐6 + 𝑐7) σ𝑖=2

𝑛 (𝑡𝑖−1) + 𝑏
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Insertion Sort: Time Complexity
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Question: When do the best and worst cases occur?

𝒕𝒊:
How many while 
loop tests for 
current value of i
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Insertion Sort: Time Complexity
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𝒕𝒊:
How many while 
loop tests for 
current value of i

Best Case: Already sorted array. Why?

Lines 6,7 never executes. 𝒕𝒊 = 𝟏

In the best case, T 𝑛 = 𝑎 ⋅ 𝑛 + 𝑐5 ⋅ σ𝑖=2
𝑛 𝑡𝑖 + (𝑐6 + 𝑐7) σ𝑖=2

𝑛 (𝑡𝑖−1) + 𝑏

               = 𝑎 ⋅ 𝑛 + 𝑐5 ⋅ 𝑛 − 1 + 𝑏 = 𝑎′ ⋅ 𝑛 + 𝑏′
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Insertion Sort: Time Complexity
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𝒕𝒊:
How many while 
loop tests for 
current value of i

Worst Case: Reverse sorted array. Why?

Lines 5 executes until 𝑗 = 0. So, executes for 𝒋 = 𝒊 − 𝟏, 𝒊 − 𝟐, … , 𝟎.

𝒕𝒊 = 𝒊

So, line 5 executes σ𝑖=2
𝑛 𝑖, lines 6 and 7 each execute σ𝑖=2

𝑛 (𝑖 − 1) times.
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Insertion Sort: Time Complexity
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Goal: evaluate σ𝑖=2
𝑛 𝑖 and σ𝑖=2

𝑛 (𝑖 − 1)

෍

𝑖=2

𝑛

𝑖 = ෍

𝑖=1

𝑛

𝑖  − 1 =
𝑛 𝑛 + 1

2
− 1

෍

𝑖=2

𝑛

𝑖 − 1 = ෍

𝑖=1

𝑛−1

𝑖 =
𝑛 − 1 𝑛

2

The summation

෍

𝑘=1

𝑛

𝑘 = 1 + 2 + ⋯ + 𝑛

is an arithmetic series and has the value

෍

𝑘=1

𝑛

𝑘 =
𝑛(𝑛 + 1)

2

Evaluating the sums
• Appendix A: Summations
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Insertion Sort: Time Complexity
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In the worst case, 

T 𝑛 = 𝑎 ⋅ 𝑛 + 𝑐5 ⋅ ෍
𝑖=2

𝑛

𝑡𝑖 + (𝑐6 + 𝑐7) ෍
𝑖=2

𝑛

(𝑡𝑖−1) + 𝑏

        = 𝑎 ⋅ 𝑛 + 𝑐5
𝑛 𝑛+1

2
− 1 + 𝑐6 + 𝑐7

𝑛 𝑛−1

2
+ 𝑏

                       = (
𝑐5+𝑐6+𝑐7

2
)𝑛2 + a +

𝑐5−𝑐6−𝑐7

2
𝑛 + 𝑏 − 𝑐5

     = 𝑎′𝑛2 + 𝑏′𝑛 + 𝑐′
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Order of Growth
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• Principal interest is to determine

• How running time grows with input size: Order of growth.

• The running time for large inputs: Asymptotic complexity.

• Running time growth as input size goes to ∞

• Lower-order terms and coefficient of the highest-order term are 

insignificant.

• In 3n3+7n+1, which term dominates the running time for very large n?

• Above running time is Θ(𝑛3)



58

Order of Growth
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• Express the worst- and best-case running times of

• FindMax

• Linear Search

• Insertion Sort



Thank You!
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