
COMP 550
Algorithm and Analysis

Correctness and
Running Time

Based on CLRS Sec 2.1, 2.2

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Algorithm: More Formal

• A finite sequence of rigorous instructions for solving a well-

specified computational problem

COMP550@UNC 2

Algorithm: Formal

• Alonzo Church and Alan Turing in 1936 came with formal

definitions for the concept of algorithm

• One definition: Turing Machine that always halts.

• Other definitions: Lambda Calculus, Recursive Functions

• These definitions are equivalent among each others

COMP550@UNC 3

Algorithm Analysis

COMP550@UNC 4

• If we can develop an algorithm for a problem, we need to

analyze it (note that some problem may be unsolvable!)

• Is the algorithm correct?

• Use mathematical tools

• How efficient it is?

• Why needed? How to measure this?

COMP550@UNC 5

Algorithm Correctness Proof

FindMax: Correctness

COMP550@UNC 6

• FindMax is correct iff

• For each possible input, FindMax halts and

returns the maximum of input array

FindMax: Correctness

COMP550@UNC 7

• Intuitive explanation ≠ Correctness proof

• An example where the algorithm works ≠ Correctness proof

• Common proof techniques

• Proof by Construction

• Proof by Induction

• Proof by Contradiction

FindMax: Correctness

COMP550@UNC 8

• Loop invariant

• A property that is true before, during, and after a loop.

• Proving a loop invariant: 3 steps

• Initialization: the loop invariant is true before the loop starts.

• Maintenance: if the invariant is true before one loop iteration, it

remains true before the next.

• Termination: The loop terminates AND the invariant gives a useful

property that helps show why the algorithm is correct.

Loop invariant

(LI) At the start of each iteration of

the for loop of lines 2-4, CurrentMax

contains the maximum of all elements

in the subarray A[1 : i-1].

9

FindMax: Correctness

COMP550@UNC

Loop invariant

(LI) At the start of each iteration of

the for loop of lines 2-4, CurrentMax

contains the maximum of all elements

in the subarray A[1 : i-1].

10

FindMax: Correctness

COMP550@UNC

Initialization

LI holds before the first iteration (when i=2)

LI with i=2: CurrentMax contains the

maximum of the subarray A[1 : 1].

Proof: Due to line 1.

11

FindMax: Correctness

COMP550@UNC

Loop invariant

(LI) At the start of each iteration of

the for loop of lines 2-4, CurrentMax

contains the maximum of all elements

in the subarray A[1 : i-1].

Maintenance

LI holds before the (k+1)-th iteration assuming

that it holds before the k-th iteration.

If CurrentMax contains the maximum of the

subarray A[1 : k-1] before the k-th iteration,

then CurrentMax contains the maximum of the

sub-array A[1 : k] before the (k+1)-th iteration.

12

FindMax: Correctness

COMP550@UNC

Maintenance: If CurrentMax contains

the maximum of the subarray A[1 : k-

1] before the k-th iteration, then

CurrentMax contains the maximum of

the sub-array A[1 : k] before the

(k+1)-th iteration.

Proof: We need to consider the k-th iteration.

• CurrentMax holds max
1≤𝑖≤𝑘−1

𝐴[𝑖] before the k-th

iteration (induction hypothesis).

• Case 1: ∀𝑖 ≤ 𝑘 − 1, 𝐴 𝑖 < 𝐴[𝑘] holds.

• Then, max
1≤𝑖≤𝑘−1

𝐴 𝑖 < 𝐴[𝑘]

• By induction hypothesis, CurrentMax < 𝐴[𝑘]

• Line 4 assigns 𝐴[𝑘] to CurrentMax

• CurrentMax = max
1≤𝑖≤𝑘

𝐴 𝑖

13

FindMax: Correctness

COMP550@UNC

Maintenance: If CurrentMax contains

the maximum of the subarray A[1 : k-

1] before the k-th iteration, then

CurrentMax contains the maximum of

the sub-array A[1 : k] before the

(k+1)-th iteration.

Proof: We need to consider the k-th iteration.

• CurrentMax holds max
1≤𝑖≤𝑘−1

𝐴[𝑖] before the k-th

iteration (induction hypothesis).

• Case 2: ∃𝑖 ≤ 𝑘 − 1, 𝐴 𝑖 ≥ 𝐴[𝑘] holds.

• Then, max
1≤𝑖≤𝑘−1

𝐴 𝑖 ≥ 𝐴[𝑘]

• By induction hypothesis, CurrentMax ≥ 𝐴[𝑘]

• Line 3 condition is False

• CurrentMax = max
1≤𝑖≤𝑘

𝐴 𝑖

• i incremented by 1

14

FindMax: Correctness

COMP550@UNC

Loop invariant

(LI) At the start of each iteration of

the for loop of lines 2-4, CurrentMax

contains the maximum of all elements

in the subarray A[1 : i-1].

Termination

Loop terminates when i > n.

i is an integer → loop terminates when i=n+1

At the start of (n+1)-th iteration of the for loop

of lines 2-4, CurrentMax contains the maximum of

all elements in the subarray A[1 : n].

15

FindMax: Correctness

COMP550@UNC

Loop invariant

(LI) At the start of each iteration of

the for loop of lines 2-4, CurrentMax

contains the maximum of all elements

in the subarray A[1 : i-1].

We also need to prove that the algorithm

always halts.

• Trivial here

• i cannot increase beyond 𝑛 + 1

• Not always easy!

Algorithm Efficiency

COMP550@UNC 16

• There are often many approaches (algorithms) to solve a

problem (Recall: Finding the maximum)

• How do we choose between them?

• At the heart of computer program design are two

(sometimes conflicting) goals

1. To design an algorithm that is easy to understand, code, debug

2. To design an algorithm that makes efficient use of the

computer’s resources

COMP550@UNC 17

Algorithm Efficiency

Algorithm Efficiency

COMP550@UNC 18

• (1) is the concern of Software Engineering

• (2) is the concern of Algorithm Analysis

• Following questions are relevant for (2):

• How to find the most efficient of several possible algorithms for

the same problem.

• Is the algorithm optimal (best in some sense)?

• Can we do even better?

Algorithm Efficiency

COMP550@UNC 19

• Since (2) is about efficiency, what should be the metric to

determine efficiency?

• Computation time (a.k.a. running time)

• Memory requirement

• Communication bandwidth, etc.

• Primary concern:

 i) computation time, ii) memory requirement

Determining Running Time

COMP550@UNC 20

• Option 1: Empirical analysis (run executable code)

• Option 2: Theoretical analysis

• Which one is better?

Option 1: Empirical Analysis

COMP550@UNC 21

• Run executable code

• Compare Alg. A and Alg. B that solve the same problem

• Need to implement both

• Suppose Alg. A shows takes less computation time (avg or worst?)

• Alg. A might be better coded

• Can run both on finite number of test cases (inputs). What if Alg. A is

suitable for these inputs, but does poorly in many unseen inputs?

• The computing platform may favor Alg. A

Option 2: Theoretical Analysis

COMP550@UNC 22

• What computing model needs to be assumed?

• What should be the costs of different operations?

• Running time should be determined with respect to what?

• An algorithm can be represented differently, how to make

the analysis independent of this dissimilarity?

Computing Model

COMP550@UNC 23

• Running time measurement should be machine independent

• Use a hypothetical computing platform (should not be overly

unrealistic)

• Our assumption: Random Access Machine (RAM) model

• Single processor

• Executes instructions one after another (no concurrency)

RAM Model

COMP550@UNC 24

• Supports primitive constant-time instructions

• Arithmetic (+, –, *, /, %, floor, ceiling).

• Data Movement (load, store, copy).

• Control (branch, subroutine call).

• No complex operations supported

• No sort operation (can’t assume to do it in constant time)

• Simplifying assumption: run time is 1 time unit for all simple

instructions.

RAM Model

COMP550@UNC 25

• Memory is unlimited

• No memory hierarchy Fig. Source: Computer Systems: A Programmer's Perspective, Bryant
and O’ Hallaron

1 ns

4 ns

100 ns

16k+ ns

Latency Numbers Every Programmer Should Know
https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Running Time

COMP550@UNC 26

• The running time of an algorithm on a particular input is

the number of primitive operations or “steps” executed

• Also called “time complexity” of the algorithm

• Running time usually grows with “input size’’

• Steps required to sort 1 million numbers vs 1000 numbers

• Running time also depends on other input characteristics

• Sorting an already sorted array

Input Size

COMP550@UNC 27

• Determine running time w.r.t. input size

• Formally, input size depends on how input is encoded

• We’ll see this later in this course

• Input size depends on the problem in hand

• Array problems: number of items

• Graph problems: number of vertices and edges

Worst, Average, and Best-Case Complexity

COMP550@UNC 28

• Worst-case complexity

• Maximum steps the algorithm takes for any possible input

• Most tractable measure

• Average-case complexity

• Average number of steps for all possible inputs

• Requires probability distribution of possible inputs, which is usually difficult to

provide and to analyze

• Best-case complexity

• Minimum number of steps for any possible input

• Not useful. Why?

Why Worst-Case Complexity?

COMP550@UNC 29

• An upper bound on the running time for any input

• The algorithm never takes any longer

• For some algorithms, the worst case occurs fairly often

• The average case is often roughly as bad as the worst case

Worst-Case Complexity: Example

COMP550@UNC 30

FindMax(A,n) Cost Times

1. CurrentMax ← A[1]

2. for i ← 2 to n do

3. if A[i] > CurrentMax then

4. CurrentMax ← A[i]

5. return CurrentMax

Worst-Case Complexity: Example

COMP550@UNC 31

FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2

3. if A[i] > CurrentMax then 𝑐3

4. CurrentMax ← A[i] 𝑐4

5. return CurrentMax 𝑐5

Worst-Case Complexity: Example

COMP550@UNC 32

FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3

4. CurrentMax ← A[i] 𝑐4

5. return CurrentMax 𝑐5

Worst-Case Complexity: Example

COMP550@UNC 33

FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4

5. return CurrentMax 𝑐5

In the worst-case, how many times line 4 executes?

Worst-Case Complexity: Example

COMP550@UNC 34

FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4 𝑛 − 1

5. return CurrentMax 𝑐5 1

Worst-case running time, 𝑇(𝑛) = 𝑐1 + 𝑐2 ⋅ 𝑛 + 𝑐3 ⋅ 𝑛 − 1 + 𝑐4 ⋅ 𝑛 − 1 + 𝑐5

 = 𝑐2 + 𝑐3 + 𝑐4 ⋅ 𝑛 + 𝑐1 − 𝑐3 − 𝑐4 + 𝑐5
 = 𝑎 ⋅ 𝑛 + 𝑏

Best-Case Complexity: Example

COMP550@UNC 35

FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4 ?

5. return CurrentMax 𝑐5 1

In the best-case, how many times line 4 executes?

Best-Case Complexity: Example

COMP550@UNC 36

FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4 0

5. return CurrentMax 𝑐5 1

Best-case running time, 𝑇(𝑛) = 𝑐1 + 𝑐2 ⋅ 𝑛 + 𝑐3 ⋅ 𝑛 − 1 + 𝑐4 ⋅ 0 + 𝑐5

 = 𝑐2 + 𝑐3 + 𝑐4 ⋅ 𝑛 + 𝑐1 − 𝑐3 + 𝑐5
 = 𝑎 ⋅ 𝑛 + 𝑏

Average-Case Complexity: Example

COMP550@UNC 37

FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4 𝑥

5. return CurrentMax 𝑐5 1

Avg-case running time, 𝑇(𝑛) = 𝑐1 + 𝑐2 ⋅ 𝑛 + 𝑐3 ⋅ 𝑛 − 1 + 𝑐4 ⋅ 𝐸[𝑥] + 𝑐5

 = 𝑐2 + 𝑐3 ⋅ 𝑛 + 𝑐1 − 𝑐3 + 𝑐4 ⋅
σ𝑖=0

𝑛−1 𝑖

𝑛
+ c5

38

Insertion Sort: Time Complexity

COMP550@UNC

Goal: evaluate σ𝑖=0
𝑛−1 𝑖

෍

𝑖=0

𝑛−1

𝑖 = ෍

𝑖=1

𝑛−1

𝑖 =
𝑛 − 1 𝑛

2

The summation

෍

𝑘=1

𝑛

𝑘 = 1 + 2 + ⋯ + 𝑛

is an arithmetic series and has the value

෍

𝑘=1

𝑛

𝑘 =
𝑛(𝑛 + 1)

2

Evaluating the sums
• Appendix A: Summations

Average-Case Complexity: Example

COMP550@UNC 39

FindMax(A,n) Cost Times

1. CurrentMax ← A[1] 𝑐1 1

2. for i ← 2 to n do 𝑐2 𝑛

3. if A[i] > CurrentMax then 𝑐3 𝑛 − 1

4. CurrentMax ← A[i] 𝑐4 𝑥

5. return CurrentMax 𝑐5 1

Avg-case running time, 𝑇(𝑛) = 𝑐1 + 𝑐2 ⋅ 𝑛 + 𝑐3 ⋅ 𝑛 − 1 + 𝑐4 ⋅ 𝐸[𝑥] + 𝑐5

 = 𝑐2 + 𝑐3 ⋅ 𝑛 + 𝑐1 − 𝑐3 + 𝑐4 ⋅
σ𝑖=0

𝑛−1 𝑖

𝑛
+ 𝑐5

 = 𝑐2 + 𝑐3 ⋅ 𝑛 + 𝑐1 − 𝑐3 + 𝑐4 ⋅
𝑛−1 ⋅𝑛

𝑛⋅2
+ 𝑐5

 = 𝑎 ⋅ 𝑛 + 𝑏

Searching Problem

COMP550@UNC 40

• Find an element in a sequence of numbers

• Input: A sequence of 𝑛 numbers 𝑎1, 𝑎2, … , 𝑎𝑛 and a 𝑘𝑒𝑦

• Output: True if ∃𝑘 ∈ 1. . 𝑛 ∶ 𝑘𝑒𝑦 = 𝑎𝑘 , False otherwise

• Example:

 Input: 31, 41, 59, 26, 41, 58 , 59

 Output: True

Linear Search

COMP550@UNC 41

LinearSearch(A,n,key) Cost Times

1. i = 1

2. while i ≤ n and A[i] ≠ key do

3. i = i + 1

4. if i ≤ n then

5. return True

6. return False

Try at home: Correctness proof by loop invariant.

Linear Search: Worst-Case

COMP550@UNC 42

LinearSearch(A,n,key) Cost Times

1. i = 1 𝑐1 1

2. while i ≤ n and A[i] ≠ key do 𝑐2 𝑥

3. i = i + 1 𝑐3 𝑥 − 1

4. if i ≤ n then 𝑐4 1

5. return True 𝑐5 1

6. return False 𝑐6 1

𝑥 is an integer between 1 and 𝑛 + 1

• Worst case: 𝑥 = 𝑛 + 1

• Best case: 𝑥 = 1

• Average case: 𝑥 = 𝑛/2

Insertion Sort

COMP550@UNC 43

• Informal description:

• Iterate the array from the first element

• If the current element is in wrong place w.r.t. already seen

elements, move it to its correct place

Insertion Sort

COMP550@UNC 44

From CLRS 4th edition

Insertion Sort

COMP550@UNC 45

5 2 4 6 1 3

key

2 5 4 6 1 3

key

2 4 5 6 1 3

key

2 4 5 6 1 3

key

1 2 4 5 6 3

key

1 2 3 4 5 6

Loop invariant

(LI) At the start of each iteration of the

for loop of lines 1-8, the subarray A[1 : i-1]

consists of all elements originally in A[1 : i-

1] and A[1 : i-1] is sorted.

46

Insertion Sort: Correctness

COMP550@UNC

Loop invariant

(LI) At the start of each iteration of

the for loop of lines 1-8, the subarray

A[1 : i-1] consists of all elements

originally in A[1 : i-1] and A[1 : i-1] is

sorted.

47

Insertion Sort: Correctness

COMP550@UNC

Initialization

LI holds before the first iteration (when i=2)

LI with i=2: The subarray A[1 : 1] consists of

all elements originally in A[1 : 1] and A[1 : 1] is

sorted.

Proof: Trivially true.

48

Insertion Sort: Correctness

COMP550@UNC

Loop invariant

(LI) At the start of each iteration of

the for loop of lines 1-8, the subarray

A[1 : i-1] consists of all elements

originally in A[1 : i-1] and A[1 : i-1] is

sorted.

Maintenance

LI holds before the (k+1)-th iteration

assuming it holds before the k-th iteration.

If the subarray A[1 : k-1] is sorted before

the k-th iteration, then A[1 : k] is sorted

before the (k+1)-th iteration.

49

Insertion Sort: Correctness

COMP550@UNC

Maintenance: If the subarray

A[1 : k] is sorted before the k-th

iteration, then A[1 : k+1] is

sorted before the (k+1)-th

iteration.

Proof: We need to consider the k-th iteration.

• A[1:k-1] is already sorted before that.

• Let k* < k be the last index such that A[j] ≤

A[k] for all j ≤ k*. (Loop breaks at j=k*).

• k* = 0 if A[j] > A[k] for all j < k+1.

• Lines 5-7 shifts each A[j] with k* < j < k to

one position right.

• Line 8 moves key to A[k*+1].

• i increments by 1

Informal!

50

Insertion Sort: Correctness

COMP550@UNC

Loop invariant

(LI) At the start of each iteration of

the for loop of lines 1-8, the subarray

A[1 : i-1] consists of all elements

originally in A[1 : i-1] and A[1 : i-1] is

sorted.

Termination

Loop terminates when i > n.

i is an integer → loop terminates when i=n+1

At the start of (n+1)-th iteration of the for loop

of lines 1-8, the subarray A[1 : n] consists of all

elements originally in A[1 : n] and A[1 : n] is

sorted.

51

Insertion Sort: Time Complexity

COMP550@UNC

𝒕𝒊:
How many while
loop tests for
current value of i

Running time, T 𝑛 = 𝑐1 ⋅ 𝑛 + 𝑐2 𝑛 − 1 + 𝑐4 𝑛 − 1 + 𝑐5 ⋅ σ𝑖=2
𝑛 𝑡𝑖 +

 𝑐6 ⋅ σ𝑖=2
𝑛 (𝑡𝑖−1) + 𝑐7 ⋅ σ𝑖=2

𝑛 (𝑡𝑖−1) + 𝑐8(𝑛 − 1)

 = (𝑐1 + 𝑐2 + 𝑐4 + 𝑐8) 𝑛 + 𝑐5 ⋅ σ𝑖=2
𝑛 𝑡𝑖 + (𝑐6 + 𝑐7) σ𝑖=2

𝑛 (𝑡𝑖−1)
−(𝑐2 + 𝑐4 + 𝑐8)

 = 𝑎 ⋅ 𝑛 + 𝑐5 ⋅ σ𝑖=2
𝑛 𝑡𝑖 + (𝑐6 + 𝑐7) σ𝑖=2

𝑛 (𝑡𝑖−1) + 𝑏

52

Insertion Sort: Time Complexity

COMP550@UNC

Question: When do the best and worst cases occur?

𝒕𝒊:
How many while
loop tests for
current value of i

53

Insertion Sort: Time Complexity

COMP550@UNC

𝒕𝒊:
How many while
loop tests for
current value of i

Best Case: Already sorted array. Why?

Lines 6,7 never executes. 𝒕𝒊 = 𝟏

In the best case, T 𝑛 = 𝑎 ⋅ 𝑛 + 𝑐5 ⋅ σ𝑖=2
𝑛 𝑡𝑖 + (𝑐6 + 𝑐7) σ𝑖=2

𝑛 (𝑡𝑖−1) + 𝑏

 = 𝑎 ⋅ 𝑛 + 𝑐5 ⋅ 𝑛 − 1 + 𝑏 = 𝑎′ ⋅ 𝑛 + 𝑏′

54

Insertion Sort: Time Complexity

COMP550@UNC

𝒕𝒊:
How many while
loop tests for
current value of i

Worst Case: Reverse sorted array. Why?

Lines 5 executes until 𝑗 = 0. So, executes for 𝒋 = 𝒊 − 𝟏, 𝒊 − 𝟐, … , 𝟎.

𝒕𝒊 = 𝒊

So, line 5 executes σ𝑖=2
𝑛 𝑖, lines 6 and 7 each execute σ𝑖=2

𝑛 (𝑖 − 1) times.

55

Insertion Sort: Time Complexity

COMP550@UNC

Goal: evaluate σ𝑖=2
𝑛 𝑖 and σ𝑖=2

𝑛 (𝑖 − 1)

෍

𝑖=2

𝑛

𝑖 = ෍

𝑖=1

𝑛

𝑖 − 1 =
𝑛 𝑛 + 1

2
− 1

෍

𝑖=2

𝑛

𝑖 − 1 = ෍

𝑖=1

𝑛−1

𝑖 =
𝑛 − 1 𝑛

2

The summation

෍

𝑘=1

𝑛

𝑘 = 1 + 2 + ⋯ + 𝑛

is an arithmetic series and has the value

෍

𝑘=1

𝑛

𝑘 =
𝑛(𝑛 + 1)

2

Evaluating the sums
• Appendix A: Summations

56

Insertion Sort: Time Complexity

COMP550@UNC

In the worst case,

T 𝑛 = 𝑎 ⋅ 𝑛 + 𝑐5 ⋅ ෍
𝑖=2

𝑛

𝑡𝑖 + (𝑐6 + 𝑐7) ෍
𝑖=2

𝑛

(𝑡𝑖−1) + 𝑏

 = 𝑎 ⋅ 𝑛 + 𝑐5
𝑛 𝑛+1

2
− 1 + 𝑐6 + 𝑐7

𝑛 𝑛−1

2
+ 𝑏

 = (
𝑐5+𝑐6+𝑐7

2
)𝑛2 + a +

𝑐5−𝑐6−𝑐7

2
𝑛 + 𝑏 − 𝑐5

 = 𝑎′𝑛2 + 𝑏′𝑛 + 𝑐′

57

Order of Growth

COMP550@UNC

• Principal interest is to determine

• How running time grows with input size: Order of growth.

• The running time for large inputs: Asymptotic complexity.

• Running time growth as input size goes to ∞

• Lower-order terms and coefficient of the highest-order term are

insignificant.

• In 3n3+7n+1, which term dominates the running time for very large n?

• Above running time is Θ(𝑛3)

58

Order of Growth

COMP550@UNC

• Express the worst- and best-case running times of

• FindMax

• Linear Search

• Insertion Sort

Thank You!

COMP550@UNC 59

	Slide 1: COMP 550 Algorithm and Analysis Correctness and Running Time Based on CLRS Sec 2.1, 2.2
	Slide 2: Algorithm: More Formal
	Slide 3: Algorithm: Formal
	Slide 4: Algorithm Analysis
	Slide 5
	Slide 6: FindMax: Correctness
	Slide 7: FindMax: Correctness
	Slide 8: FindMax: Correctness
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Algorithm Efficiency
	Slide 17
	Slide 18: Algorithm Efficiency
	Slide 19: Algorithm Efficiency
	Slide 20: Determining Running Time
	Slide 21: Option 1: Empirical Analysis
	Slide 22: Option 2: Theoretical Analysis
	Slide 23: Computing Model
	Slide 24: RAM Model
	Slide 25: RAM Model
	Slide 26: Running Time
	Slide 27: Input Size
	Slide 28: Worst, Average, and Best-Case Complexity
	Slide 29: Why Worst-Case Complexity?
	Slide 30: Worst-Case Complexity: Example
	Slide 31: Worst-Case Complexity: Example
	Slide 32: Worst-Case Complexity: Example
	Slide 33: Worst-Case Complexity: Example
	Slide 34: Worst-Case Complexity: Example
	Slide 35: Best-Case Complexity: Example
	Slide 36: Best-Case Complexity: Example
	Slide 37: Average-Case Complexity: Example
	Slide 38
	Slide 39: Average-Case Complexity: Example
	Slide 40: Searching Problem
	Slide 41: Linear Search
	Slide 42: Linear Search: Worst-Case
	Slide 43: Insertion Sort
	Slide 44: Insertion Sort
	Slide 45: Insertion Sort
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Thank You!

